2194 independent reflections

 $R_{\rm int} = 0.063$

1479 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(7-Methyl-3-oxo-1-phenylperhydronaphthalen-4a-yl)malononitrile

Tai-Ran Kang* and Lian-Mei Chen

College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China Correspondence e-mail: kangtairan@yahoo.com.cn

Received 6 November 2009; accepted 8 November 2009

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.083; data-to-parameter ratio = 10.5.

In the title compound, C₂₀H₂₂N₂O, both cyclohexane rings adopt chair conformations. Weak $C-H\cdots N$ and $C-H\cdots O$ hydrogen bonding is present in the crystal structure.

Related literature

For the use of malononitrile-containing compounds as building blocks in organic synthesis, see: Magdi et al. (2003); Michail & Sergey (2008); Zhang et al. (2008). For a related structure, see: Zhou et al. (2007).

Experimental

Crystal data

 $C_{20}H_{22}N_2O$ $M_r = 306.40$ Monoclinic, P2 a = 11.575 (2) Å b = 6.0907 (12) Å c = 12.276 (3) Å $\beta = 101.38 \ (3)^{\circ}$

V = 848.4 (3) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-1}$ T = 113 K0.25 \times 0.24 \times 0.21 mm

Data collection

Rigaku Saturn CCD area-detector diffractometer Absorption correction: none 7044 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	1 restraint
$wR(F^2) = 0.083$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
2194 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$
209 parameters	

Table 1

Hydrogen-ł	oond geon	netry (A	., °).
2 0		2 1	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C9−H9···O1 ⁱ	0.95	2.54	3.451 (3)	162
$C12 - H12A \cdots O1^{n}$ $C18 - H18 \cdots N1^{iii}$	0.99 1.00	2.35 2.36	3.159 (2) 3.306 (3)	138 157

Symmetry codes: (i) x, y = 1, z; (ii) $-x + 1, y = \frac{1}{2}, -z$; (iii) $-x + 1, y = \frac{1}{2}, -z + 1$.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The diffraction data were collected at the Centre for Testing and Analysis, Sichuan University. We acknowledge financial support from China West Normal University (No 412374).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2670).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Magdi, E. A., Zaki, M., Fernanda, P. & Brian, L. B. (2003). J. Org. Chem. 68, 276-282.

- Michail, N. E. & Sergey, K. F. (2008). Tetrahedron, 64, 708-713.
- Rigaku/MSC (2005). CrystalClear and CrystalStructure, Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Zhang, D.-J., Wang, G.-X. & Zhu, R.-X. (2008). Tetrahedron Asymmetry, 19, 568-576.
- Zhou, J.-X., Wang, X.-S. & Shi, D.-Q. (2007). Acta Cryst. E63, o2082-o2083.

supplementary materials

Acta Cryst. (2009). E65, o3065 [doi:10.1107/S1600536809047175]

2-(7-Methyl-3-oxo-1-phenylperhydronaphthalen-4a-yl)malononitrile

T.-R. Kang and L.-M. Chen

Comment

Malononitrile derivatives are useful intermediates in organic synthesis (Michail *et al.* 2008; Zhang *et al.* 2008; Zhou *et al.* 2007). Their potential applications are used for the preparation of heterocyclic ring compounds (Magdi *et al.* 2003). As a part of our interest in the synthsis of some complex ring systems, we investigated the title compound, (I), which is a potential precursor in the preparation of multifunctional tricyclic compound. We report herein the crystal structure of the title compound.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. Two six membered rings (cyclohexanone and cyclohexane) adopt an chair conformation. The crystal packing is stabilized by C—H···N and C—H···0 hydrogen bonding (Table 1).

Experimental

2-(4-methylcyclohexylidene)malononitrile (0.16 g, 1 mmol), (*E*)-4-phenylbut-3-en-2-one (0.175 g, 1.2 mmol), 9S-amino-9-deoxyepiquinine (0.065 g, 0.2 mmol), 2,2,2-trifluoroacetic acid (0.029 g, 0.4 mmol) and *N*-ethyl-*N*-isopropylpropan-2amine (0.023 g, 0.15 mmol) were stirred in THF (3 ml) at 298 K for 110 h. Then the reaction was quenched by adding 1 mol/*L* HCl (5 ml). The mixture was extracted with ethyl acetate (20 ml), dried with anhydrous sodium sulfate. The solvent was removed under reduced pressure and flash chromatography on silica gel gave the pure compound as a white solid. Colorless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation the mixture solvents of ethyl acetate and petroleum ether.

Refinement

The carbon-bound hydrogen atoms were placed in calculated positions, with C—H = 0.95–1.00 Å, and refined using a riding model, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atom and $1.2U_{eq}(C)$ for the others. In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Figures

Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

2-(7-Methyl-3-oxo-1-phenylperhydronaphthalen-4a-yl)malononitrile

Crystal data

CaoHaaNaO	$F_{000} = 328$
C2011221V2O	1 000 528
$M_r = 306.40$	$D_{\rm x} = 1.199 {\rm ~Mg~m}^{-3}$
Monoclinic, P2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 2724 reflections
a = 11.575 (2) Å	$\theta = 3.4 - 27.9^{\circ}$
b = 6.0907 (12) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 12.276 (3) Å	<i>T</i> = 113 K
$\beta = 101.38 \ (3)^{\circ}$	Block, colourless
V = 848.4 (3) Å ³	$0.25\times0.24\times0.21~mm$
Z = 2	

Data collection

Rigaku Saturn CCD area-detector diffractometer	2194 independent reflections
Radiation source: rotating anode	1479 reflections with $I > 2\sigma(I)$
Monochromator: confocal	$R_{\rm int} = 0.063$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{\rm max} = 27.9^{\circ}$
T = 113 K	$\theta_{\min} = 3.4^{\circ}$
ω and ϕ scans	$h = -15 \rightarrow 15$
Absorption correction: none	$k = -7 \rightarrow 7$
7044 measured reflections	$l = -14 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained

$m_{P}(E^{2}) = 0.082$	$w = 1/[\sigma^2(F_0^2) + (0.021P)^2]$
WK(F) = 0.085	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{max} < 0.001$
2194 reflections	$\Delta \rho_{max} = 0.22 \text{ e } \text{\AA}^{-3}$
209 parameters	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Deine and stars site 1 and in a star star star in a site dias at	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
0.59916 (14)	0.6258 (3)	0.05489 (13)	0.0319 (4)
0.3799 (2)	0.3869 (4)	0.41898 (18)	0.0389 (6)
0.40092 (18)	-0.1712 (4)	0.21854 (19)	0.0354 (6)
0.61036 (19)	0.2632 (4)	0.27728 (18)	0.0183 (5)
0.71015 (19)	0.1075 (4)	0.25731 (17)	0.0193 (5)
0.6728	-0.0267	0.2185	0.023*
0.7857 (2)	0.2188 (4)	0.18092 (18)	0.0204 (5)
0.8198	0.3556	0.2194	0.025*
0.8884 (2)	0.0760 (4)	0.16412 (18)	0.0223 (6)
1.0035 (2)	0.1440 (4)	0.20656 (19)	0.0272 (6)
1.0169	0.2812	0.2437	0.033*
1.0987 (2)	0.0139 (5)	0.1952 (2)	0.0330 (7)
1.1766	0.0634	0.2239	0.040*
1.0812 (2)	-0.1863 (5)	0.1427 (2)	0.0329 (7)
1.1466	-0.2765	0.1367	0.040*
0.9677 (2)	-0.2551 (4)	0.0988 (2)	0.0330 (6)
0.9550	-0.3919	0.0612	0.040*
0.8720 (2)	-0.1242 (4)	0.10967 (19)	0.0283 (6)
0.7943	-0.1729	0.0793	0.034*
0.7070 (2)	0.2892 (4)	0.07005 (18)	0.0261 (6)
0.7555	0.3644	0.0234	0.031*
0.6711	0.1578	0.0294	0.031*
0.6119 (2)	0.4407 (4)	0.09118 (19)	0.0239 (6)
0.5360 (2)	0.3476 (4)	0.16652 (17)	0.0220 (5)
	x 0.59916 (14) 0.3799 (2) 0.40092 (18) 0.61036 (19) 0.71015 (19) 0.6728 0.7857 (2) 0.8198 0.8884 (2) 1.0035 (2) 1.0169 1.0987 (2) 1.1766 1.0987 (2) 1.1766 1.0812 (2) 1.1466 0.9677 (2) 0.9550 0.8720 (2) 0.7943 0.7070 (2) 0.7555 0.6711 0.6119 (2) 0.5360 (2)	x y $0.59916 (14)$ $0.6258 (3)$ $0.3799 (2)$ $0.3869 (4)$ $0.40092 (18)$ $-0.1712 (4)$ $0.61036 (19)$ $0.2632 (4)$ $0.71015 (19)$ $0.1075 (4)$ 0.6728 -0.0267 $0.7857 (2)$ $0.2188 (4)$ 0.8198 0.3556 $0.8884 (2)$ $0.0760 (4)$ $1.0035 (2)$ $0.1440 (4)$ 1.0169 0.2812 $1.0987 (2)$ $0.0139 (5)$ 1.1766 0.0634 $1.0812 (2)$ $-0.1863 (5)$ 1.1466 -0.2765 $0.9677 (2)$ $-0.2551 (4)$ 0.9550 -0.3919 $0.8720 (2)$ -0.1729 $0.7070 (2)$ $0.2892 (4)$ 0.7555 0.3644 0.6711 0.1578 $0.6119 (2)$ $0.3476 (4)$	xyz $0.59916 (14)$ $0.6258 (3)$ $0.05489 (13)$ $0.3799 (2)$ $0.3869 (4)$ $0.41898 (18)$ $0.40092 (18)$ $-0.1712 (4)$ $0.21854 (19)$ $0.61036 (19)$ $0.2632 (4)$ $0.27728 (18)$ $0.71015 (19)$ $0.1075 (4)$ $0.25731 (17)$ 0.6728 -0.0267 0.2185 $0.7857 (2)$ $0.2188 (4)$ $0.18092 (18)$ 0.8198 0.3556 0.2194 $0.8884 (2)$ $0.0760 (4)$ $0.16412 (18)$ $1.0035 (2)$ $0.1440 (4)$ $0.20656 (19)$ 1.0169 0.2812 0.2437 $1.0987 (2)$ $0.0139 (5)$ $0.1952 (2)$ 1.1766 0.0634 0.2239 $1.0812 (2)$ $-0.1863 (5)$ $0.1427 (2)$ 1.1466 -0.2765 0.1367 0.9550 -0.3919 0.0612 $0.9570 (2)$ $-0.1242 (4)$ $0.10967 (19)$ 0.7943 -0.1729 0.0793 $0.7070 (2)$ $0.2892 (4)$ $0.07005 (18)$ 0.7555 0.3644 0.0234 0.6711 0.1578 0.0294 $0.6119 (2)$ $0.4407 (4)$ $0.09118 (19)$ $0.5360 (2)$ $0.3476 (4)$ $0.16652 (17)$

supplementary materials

H12A	0.4884	0.2251	0.1281	0.026*
H12B	0.4811	0.4625	0.1824	0.026*
C13	0.7868 (2)	0.0355 (4)	0.36900 (18)	0.0207 (5)
H13A	0.7386	-0.0562	0.4094	0.025*
H13B	0.8525	-0.0563	0.3540	0.025*
C14	0.8377 (2)	0.2275 (4)	0.44301 (19)	0.0233 (6)
H14	0.8921	0.3100	0.4039	0.028*
C15	0.7405 (2)	0.3855 (4)	0.46116 (18)	0.0226 (5)
H15A	0.7768	0.5170	0.5013	0.027*
H15B	0.6912	0.3132	0.5080	0.027*
C16	0.6622 (2)	0.4565 (4)	0.35109 (18)	0.0207 (5)
H16A	0.7093	0.5488	0.3097	0.025*
H16B	0.5969	0.5477	0.3673	0.025*
C17	0.9091 (2)	0.1482 (5)	0.55366 (19)	0.0341 (7)
H17A	0.8580	0.0640	0.5932	0.051*
H17B	0.9414	0.2750	0.5987	0.051*
H17C	0.9737	0.0546	0.5403	0.051*
C18	0.52557 (19)	0.1314 (4)	0.33947 (18)	0.0213 (5)
H18	0.5755	0.0568	0.4048	0.026*
C19	0.4415 (2)	0.2767 (4)	0.38201 (19)	0.0255 (6)
C20	0.4563 (2)	-0.0388 (4)	0.2708 (2)	0.0235 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	<i>U</i> ¹³	U^{23}
01	0.0308 (10)	0.0322 (11)	0.0298 (9)	0.0017 (9)	-0.0009 (8)	0.0110 (9)
N1	0.0373 (14)	0.0422 (15)	0.0404 (13)	-0.0023 (12)	0.0155 (11)	-0.0142 (12)
N2	0.0259 (12)	0.0288 (14)	0.0513 (14)	-0.0010 (11)	0.0073 (11)	-0.0060 (12)
C1	0.0163 (12)	0.0199 (13)	0.0181 (11)	0.0011 (10)	0.0022 (9)	0.0019 (10)
C2	0.0195 (12)	0.0195 (13)	0.0180 (11)	-0.0005 (11)	0.0010 (9)	-0.0021 (11)
C3	0.0183 (12)	0.0233 (14)	0.0196 (11)	0.0020 (11)	0.0035 (10)	0.0007 (11)
C4	0.0211 (13)	0.0274 (16)	0.0196 (12)	-0.0006 (12)	0.0070 (10)	0.0021 (11)
C5	0.0239 (13)	0.0336 (15)	0.0247 (12)	-0.0001 (13)	0.0063 (10)	0.0019 (12)
C6	0.0208 (14)	0.0470 (19)	0.0315 (14)	0.0015 (13)	0.0059 (11)	0.0048 (13)
C7	0.0273 (15)	0.0419 (19)	0.0326 (14)	0.0129 (14)	0.0133 (12)	0.0085 (13)
C8	0.0396 (17)	0.0318 (15)	0.0309 (14)	0.0053 (14)	0.0150 (13)	-0.0003 (13)
С9	0.0258 (14)	0.0293 (15)	0.0309 (14)	0.0007 (12)	0.0086 (11)	-0.0004 (12)
C10	0.0274 (14)	0.0332 (15)	0.0192 (12)	0.0010 (12)	0.0080 (10)	0.0044 (11)
C11	0.0213 (13)	0.0314 (16)	0.0164 (11)	0.0014 (12)	-0.0030 (10)	0.0017 (11)
C12	0.0190 (12)	0.0245 (14)	0.0200 (12)	0.0018 (12)	-0.0019 (10)	-0.0005 (11)
C13	0.0181 (12)	0.0232 (14)	0.0204 (12)	0.0028 (11)	0.0030 (10)	0.0020 (10)
C14	0.0193 (12)	0.0283 (14)	0.0211 (12)	0.0004 (11)	0.0012 (10)	0.0020 (11)
C15	0.0204 (13)	0.0235 (14)	0.0224 (12)	0.0002 (11)	0.0001 (10)	-0.0021 (11)
C16	0.0190 (12)	0.0195 (13)	0.0232 (12)	0.0018 (11)	0.0032 (10)	-0.0012 (11)
C17	0.0278 (14)	0.0434 (17)	0.0275 (13)	0.0072 (14)	-0.0036 (11)	-0.0005 (13)
C18	0.0178 (11)	0.0218 (12)	0.0239 (12)	0.0023 (11)	0.0031 (10)	0.0000 (11)
C19	0.0228 (13)	0.0311 (15)	0.0237 (12)	-0.0063 (13)	0.0070 (11)	-0.0056 (12)
C20	0.0192 (13)	0.0230 (14)	0.0295 (14)	0.0035 (12)	0.0081 (11)	0.0008 (12)

Geometric parameters (Å, °)

N1C191.137 (3)C10H10A0.9900N2C201.145 (3)C10H10B0.9900C1C161.534 (3)C11C121.506 (3)C1C121.547 (3)C12H12A0.9900C1C21.551 (3)C12H12B0.9900C1C181.577 (3)C13C141.526 (3)C2C131.543 (3)C13H13A0.9900C2C31.558 (3)C13H13B0.9900C2H21.0000C14C171.522 (3)C3C41.520 (3)C14H141.0000C3H31.0000C15C161.533 (3)C4C51.386 (3)C15H15A0.9900C4C51.386 (3)C15H15A0.9900C5C61.386 (3)C16H16A0.9900C5C71.375 (4)C17H17A0.9800C6-C71.375 (4)C17H17A0.9800C7C81.384 (4)C17H17A0.9800C7C81.384 (4)C17H17C0.9800C7C81.392 (3)C18C191.484 (3)C8C91.392 (3)C18C191.484 (3)C8C91.392 (3)C18C191.484 (3)C16C1-C2110.45 (19)C11C12H12A109.2C16-C1-C18108.26 (17)C11C12H12A109.2C16-C1-C18108.26 (17)C11C12H12B109.2C16-C1-C18108.26 (17)C11C12H12B109.2C16-C1-C18108.26 (17)C11C12H12B109.2C16-C1-C18 <t< th=""><th>O1—C11</th><th>1.211 (3)</th><th>C10-C11</th><th>1.498 (3)</th></t<>	O1—C11	1.211 (3)	C10-C11	1.498 (3)
N2C20 1.145 (3) C10H10B 0.9900 C1C16 1.534 (3) C11C12 1.506 (3) C1C12 1.547 (3) C12H12A 0.9900 C1C2 1.551 (3) C12H12B 0.9900 C1C18 1.577 (3) C13C14 1.526 (3) C2C13 1.543 (3) C13H13A 0.9900 C2C3 1.558 (3) C13H13B 0.9900 C2C4 1.520 (3) C14C15 1.530 (3) C3C10 1.542 (3) C14H14 1.0000 C3C10 1.542 (3) C14H14 1.0000 C3C4 1.326 (3) C15H15A 0.9900 C4C5 1.395 (3) C15H15A 0.9900 C5C6 1.386 (3) C16H16A 0.9900 C5C5 1.395 (4) C17H17A 0.9800 C7C8 1.384 (4) C17H17A 0.9800 C7C8 1.384 (4) C17H17A 0.9800 C7H17 0.9500 C18C20 1.470 (3) C8C9 1.392 (3) C18C19 1.484 (3) </td <td>N1—C19</td> <td>1.137 (3)</td> <td>C10—H10A</td> <td>0.9900</td>	N1—C19	1.137 (3)	C10—H10A	0.9900
C1C16 $1.534 (3)$ C11C12 $1.506 (3)$ C1C12 $1.547 (3)$ C12H12A 0.9900 C1C2 $1.551 (3)$ C12H12B 0.9900 C1C18 $1.577 (3)$ C13C14 $1.526 (3)$ C2C13 $1.543 (3)$ C13H13A 0.9900 C2C3 $1.558 (3)$ C13H13A 0.9900 C2C3 $1.552 (3)$ C14C17 $1.522 (3)$ C3C4 $1.520 (3)$ C14C15 $1.530 (3)$ C3C4 $1.520 (3)$ C14H14 1.0000 C3H3 1.0000 C15C16 $1.533 (3)$ C4C5 $1.386 (3)$ C15H15A 0.9900 C4C5 $1.386 (3)$ C16H16A 0.9900 C5C6 $1.386 (3)$ C16H16A 0.9800 C6H6 0.9500 C17H17A 0.9800 C7C8 $1.384 (4)$ C17H17B 0.9800 C16C1-C12 $10.45 (19)$ C11C12C1 $11.99 (18)$ C16C1C12 $10.45 (19)$ C11C12H12A 109.2	N2—C20	1.145 (3)	C10—H10B	0.9900
C1C12 1.547 (3) C12H12A 0.9900 C1C2 1.551 (3) C12H12B 0.9900 C1C18 1.577 (3) C13C14 1.526 (3) C2C13 1.543 (3) C13H13B 0.9900 C2C3 1.558 (3) C13H13B 0.9900 C2C4 1.520 (3) C14C17 1.522 (3) C3C4 1.520 (3) C14C15 1.530 (3) C3C4 1.520 (3) C14H14 1.0000 C3H3 1.0000 C15C16 1.533 (3) C4C5 1.386 (3) C15H15A 0.9900 C4C5 1.386 (3) C16H16A 0.9900 C5C6 1.386 (3) C16H16A 0.9900 C5H5 0.9500 C17H17A 0.9800 C7C8 1.384 (4) C17H17A 0.9800 C7H7 0.9500 C18C19 1.484 (3) C8C9 1.392 (3) C18C19 1.484 (3) C8C1 10.45 (19) C11C12H12A 109.2 C16C1C12 <td>C1—C16</td> <td>1.534 (3)</td> <td>C11—C12</td> <td>1.506 (3)</td>	C1—C16	1.534 (3)	C11—C12	1.506 (3)
C1-C21.551 (3)C12-H12B0.9900C1-C181.577 (3)C13-C141.526 (3)C2-C131.543 (3)C13-H13A0.9900C2-C31.558 (3)C13-H13B0.9900C2-H21.0000C14-C171.522 (3)C3-C41.520 (3)C14-C151.530 (3)C3-C101.542 (3)C14-H141.0000C3-H31.0000C15-C161.533 (3)C4-C91.386 (3)C15-H15A0.9900C4-C51.395 (3)C15-H15A0.9900C5-C61.386 (3)C16-H16B0.9900C5-H50.9500C16-H16B0.9900C6-C71.375 (4)C17-H17A0.9800C6-H60.9500C17-H17B0.9800C7-C81.384 (4)C17-H17C0.9800C7-C81.392 (3)C18-C191.484 (3)C8-C91.392 (3)C18-C191.484 (3)C8-H80.9500C10-H12A109.2C16-C1-C12110.45 (19)C11-C12-H12A109.2C16-C1-C2110.22 (18)C11-C12-H12A109.2C16-C1-C2110.22 (18)C11-C12-H12A109.2C12-C1-C18107.66 (17)C11-C12-H12B109.2C13-C2-C1110.43 (16)C14-C13-C2113.48 (19)C13-C2-C2110.43 (16)C14-C13-H13A108.9C13-C2-C3111.48 (18)C14-C13-H13A108.9C13-C2-C4100.66 (18)C2-C13-H13A108.9C13-C2-C4108.1C14-C13-H13B108	C1—C12	1.547 (3)	C12—H12A	0.9900
C1C181.577 (3)C13C141.526 (3)C2C131.543 (3)C13H13A0.9900C2C31.558 (3)C13H13B0.9900C2H21.0000C14C171.522 (3)C3C41.520 (3)C14C151.530 (3)C3C101.542 (3)C14H141.0000C3H31.0000C15C161.533 (3)C4C91.386 (3)C15H15A0.9900C4C51.395 (3)C15H15A0.9900C5C61.386 (3)C16H16B0.9900C5H50.9500C16H16B0.9900C6C71.375 (4)C17H17A0.9800C6H60.9500C17H17A0.9800C7C81.384 (4)C17H17C0.9800C7C81.392 (3)C18C191.484 (3)C8C91.392 (3)C18C191.484 (3)C8-H80.9500C11C12H12A109.2C16C1-C2110.45 (19)C11C12H12A109.2C12C1-C2111.52 (17)C1C12H12A109.2C12C1-C18108.26 (17)C11C12H12B109.2C13C2C1110.43 (16)C14C13H13A108.9C13C2C3111.48 (18)C14C13H13A108.9C13C2C3110.66 (18)C2C13H13A108.9C13C2H2108.1C2C13H13A108.9C13C2H2108.1C14C13H13B108.9	C1—C2	1.551 (3)	C12—H12B	0.9900
C2-C131.543 (3) $C13-H13A$ 0.9900 $C2-C3$ 1.558 (3) $C13-H13B$ 0.9900 $C2-H2$ 1.0000 $C14-C17$ 1.522 (3) $C3-C4$ 1.520 (3) $C14-C15$ 1.530 (3) $C3-C10$ 1.542 (3) $C14-H14$ 1.0000 $C3-H3$ 1.0000 $C15-C16$ 1.533 (3) $C4-C9$ 1.386 (3) $C15-H15A$ 0.9900 $C4-C5$ 1.395 (3) $C15-H15B$ 0.9900 $C5-C6$ 1.386 (3) $C16-H16A$ 0.9900 $C5-C6$ 1.386 (3) $C16-H16B$ 0.9900 $C5-H5$ 0.9500 $C17-H17B$ 0.9800 $C7-C8$ 1.384 (4) $C17-H17B$ 0.9800 $C7-H7$ 0.9500 $C18-C20$ 1.470 (3) $C8-C9$ 1.392 (3) $C18-C19$ 1.484 (3) $C8-H8$ 0.9500 $C18-C19$ 1.484 (3) $C9-H9$ 0.9500 $C1-C12-C1$ 111.99 (18) $C16-C1-C12$ 110.45 (19) $C11-C12-H12A$ 109.2 $C16-C1-C2$ 110.22 (18) $C11-C12-H12A$ 109.2 $C12-C1-C18$ 108.26 (17) $C11-C12-H12B$ 109.2 $C2-C1-C18$ 108.26 (17) $C11-C12-H12B$ 109.2 $C2-C1-C18$ 108.61 (18) $H12A-C12-H12B$ 107.9 $C13-C2-C1$ 110.43 (16) $C14-C13-H13A$ 108.9 $C1-C2-C3$ 111.48 (18) $C14-C13-H13A$ 108.9 $C1-C2-C3$ 110.66 (18) $C2-C13-H13A$ 108.9 $C1-C2-C2$ 109.2	C1—C18	1.577 (3)	C13—C14	1.526 (3)
C2-C3 1.558 (3) $C13-H13B$ 0.9900 $C2-H2$ 1.0000 $C14-C17$ 1.522 (3) $C3-C4$ 1.520 (3) $C14-C15$ 1.530 (3) $C3-C10$ 1.542 (3) $C14-H14$ 1.0000 $C3-H3$ 1.0000 $C15-C16$ 1.533 (3) $C4-C9$ 1.386 (3) $C15-H15A$ 0.9900 $C4-C5$ 1.395 (3) $C15-H15B$ 0.9900 $C5-C6$ 1.386 (3) $C16-H16A$ 0.9900 $C5-H5$ 0.9500 $C16-H16B$ 0.9900 $C6-C7$ 1.375 (4) $C17-H17A$ 0.9800 $C7-C8$ 1.384 (4) $C17-H17C$ 0.9800 $C7-H7$ 0.9500 $C18-C20$ 1.470 (3) $C8-C9$ 1.392 (3) $C18-C19$ 1.484 (3) $C8-H8$ 0.9500 $C11-C12-C11$ 111.99 (18) $C16-C1-C12$ 110.45 (19) $C11-C12-H12A$ 109.2 $C16-C1-C2$ 110.22 (18) $C11-C12-H12A$ 109.2 $C16-C1-C18$ 108.26 (17) $C1-C12-H12B$ 109.2 $C12-C1-C2$ 110.45 (19) $C11-C12-H12B$ 109.2 $C12-C1-C1$ 100.36 (17) $C1-C12-H12B$ 109.2 $C12-C1-C18$ 108.61 (18) $H12A-C12-H12B$ 109.2 $C12-C1-C18$ 108.61 (18) $H12A-C12-H12B$ 109.2 $C12-C1-C2$ 110.43 (16) $C14-C13-H13A$ 108.9 $C1-C2-C3$ 110.66 (18) $C2-C13-H13A$ 108.9 $C1-C2-C3$ 100.66 (18) $C2-C13-H13A$ 108.9	C2—C13	1.543 (3)	C13—H13A	0.9900
C2-H21.0000 $C14-C17$ 1.522 (3) $C3-C4$ 1.520 (3) $C14-C15$ 1.530 (3) $C3-C10$ 1.542 (3) $C14-H14$ 1.0000 $C3-H3$ 1.0000 $C15-C16$ 1.533 (3) $C4-C9$ 1.386 (3) $C15-H15A$ 0.9900 $C4-C5$ 1.395 (3) $C16-H16A$ 0.9900 $C5-C6$ 1.386 (3) $C16-H16B$ 0.9900 $C5-H5$ 0.9500 $C16-H16B$ 0.9900 $C6-C7$ 1.375 (4) $C17-H17A$ 0.9800 $C6-H6$ 0.9500 $C18-C20$ 1.470 (3) $C8-C9$ 1.384 (4) $C17-H17C$ 0.9800 $C7-H7$ 0.9500 $C18-C19$ 1.484 (3) $C8-H8$ 0.9500 $C18-C19$ 1.484 (3) $C9-H9$ 0.9500 $C1-C1-C12$ 110.45 (19) $C11-C12-C1$ $C16-C1-C12$ 110.45 (19) $C11-C12-H12A$ 109.2 $C12-C1-C2$ 110.22 (18) $C11-C12-H12A$ 109.2 $C12-C1-C18$ 108.26 (17) $C1-C12-H12B$ 109.2 $C12-C1-C18$ 108.61 (18)H12A-C12-H12B109.2 $C12-C1-C18$ 104.3 (16) $C14-C13-C12$ 113.48 (19) $C13-C2-C3$ 111.48 (18) $C14-C13-H13A$ 108.9 $C1-C2-C3$ 10.66 (18) $C2-C13-H13A$ 108.9 $C1-C2-C2-C2$ 10.66 (18) $C2-C13-H13A$ 108.9 $C1-C2-C2-C3$ 10.66 (18) $C2-C13-H13A$ 108.9	C2—C3	1.558 (3)	C13—H13B	0.9900
C3C4 1.520 (3)C14C15 1.530 (3)C3C10 1.542 (3)C14H14 1.0000 C3H3 1.0000 C15C16 1.533 (3)C4C9 1.386 (3)C15H15A 0.9900 C4C5 1.395 (3)C15H15B 0.9900 C5C6 1.386 (3)C16H16A 0.9900 C5H5 0.9500 C16H16B 0.9900 C6C7 1.375 (4)C17H17A 0.9800 C6H6 0.9500 C17H17B 0.9800 C7C8 1.384 (4)C17H17C 0.9800 C7H7 0.9500 C18C20 1.470 (3)C8C9 1.392 (3)C18C19 1.484 (3)C8H8 0.9500 C18C19 1.484 (3)C9H9 0.9500 C11C12C1 111.99 (18)C16C1C12 110.45 (19)C11C12H12A 109.2 C12C1C2 110.22 (18)C11C12H12A 109.2 C12C1C18 108.26 (17)C11C12H12B 109.2 C12C1C18 108.61 (18) $H12AC12H12B$ 109.2 C12C1C18 108.61 (18) $H12AC12H12B$ 107.9 C13C2C3 111.48 (18) $C14C13H13A$ 108.9 C1C2C3 110.66 (18) $C2C13H13A$ 108.9 C1C2C3 108.1 $C14C13H13B$ 108.9 C1C2C4 108.1 $C14C13H13B$ 108.9	С2—Н2	1.0000	C14—C17	1.522 (3)
C3C101.542 (3)C14H141.0000C3H31.0000C15C161.533 (3)C4C91.386 (3)C15H15A0.9900C4C51.395 (3)C15H15B0.9900C5C61.386 (3)C16H16A0.9900C5H50.9500C16H16B0.9900C6C71.375 (4)C17H17A0.9800C6H60.9500C17H17B0.9800C7C81.384 (4)C17H17C0.9800C7C81.392 (3)C18C191.470 (3)C8C91.392 (3)C18C191.484 (3)C8-H80.9500C18H181.0000C9H90.9500C1111.99 (18)C16C1C12110.45 (19)C11C12H12A109.2C12C1C2110.22 (18)C11C12H12A109.2C12C1C18108.26 (17)C11C12H12B109.2C12C1C18108.61 (18)H12AC12H12B109.2C13C2C3110.43 (16)C14C13C2113.48 (19)C13C2C3110.66 (18)C2C13H13A108.9C13C2H2100.81C14C13H13A108.9C13C2H2100.14(104C13H13B)108.9	C3—C4	1.520 (3)	C14—C15	1.530 (3)
C3-H31.0000C15-C161.533 (3)C4-C91.386 (3)C15-H15A0.9900C4-C51.395 (3)C15-H15B0.9900C5-C61.386 (3)C16-H16A0.9900C5-H50.9500C16-H16B0.9900C6-C71.375 (4)C17-H17A0.9800C6-H60.9500C17-H17B0.9800C7-C81.384 (4)C17-H17C0.9800C7-H70.9500C18-C201.470 (3)C8-C91.392 (3)C18-C191.484 (3)C8-H80.9500C18-H181.0000C9-H90.9500C1111.99 (18)C16-C1-C12110.45 (19)C11-C12-C1111.99 (18)C16-C1-C2110.22 (18)C11-C12-H12A109.2C12-C1-C2111.52 (17)C1-C12-H12A109.2C12-C1-C18108.26 (17)C11-C12-H12B109.2C12-C1-C18107.66 (17)C1-C12-H12B109.2C13-C2-C1110.43 (16)C14-C13-C2113.48 (19)C13-C2-C3111.48 (18)C14-C13-H13A108.9C1-C2-C3110.66 (18)C2-C13-H13A108.9C1-C2-H2108.1C14-C13-H13B108.9C1-C2-H2108.1C14-C13-H13B108.9	C3—C10	1.542 (3)	C14—H14	1.0000
C4—C91.386 (3)C15—H15A0.9900C4—C51.395 (3)C15—H15B0.9900C5—C61.386 (3)C16—H16A0.9900C5—H50.9500C16—H16B0.9900C6—C71.375 (4)C17—H17A0.9800C6—H60.9500C17—H17B0.9800C7—C81.384 (4)C17—H17C0.9800C7—C71.392 (3)C18—C191.484 (3)C8—C91.392 (3)C18—C191.484 (3)C8—H80.9500C18—H181.0000C9—H90.9500C11—C12—C1111.99 (18)C16—C1—C12110.45 (19)C11—C12—H12A109.2C12—C1—C2110.22 (18)C11—C12—H12A109.2C12—C1—C2111.52 (17)C11—C12—H12A109.2C12—C1—C18108.26 (17)C11—C12—H12B109.2C12—C1—C18108.61 (18)H12A—C12—H12B109.2C13—C2—C1110.43 (16)C14—C13—C2113.48 (19)C13—C2—C3111.48 (18)C14—C13—H13A108.9C13—C2—H2108.1C14—C13—H13B108.9C13—C2—H2108.1C14—C13—H13B108.9	С3—Н3	1.0000	C15—C16	1.533 (3)
C4—C51.395 (3)C15—H15B0.9900C5—C61.386 (3)C16—H16A0.9900C5—H50.9500C16—H16B0.9900C6—C71.375 (4)C17—H17A0.9800C6—H60.9500C17—H17B0.9800C7—C81.384 (4)C17—H17C0.9800C7—C70.9500C18—C201.470 (3)C8—C91.392 (3)C18—C191.484 (3)C8—H80.9500C18—H181.0000C9—H90.9500C11—C12—C1111.99 (18)C16—C1—C12110.45 (19)C11—C12—H12A109.2C12—C1—C2111.52 (17)C11—C12—H12A109.2C12—C1—C18108.26 (17)C11—C12—H12B109.2C12—C1—C18107.66 (17)C11—C12—H12B109.2C2—C1—C18108.61 (18)H12A—C12—H12B109.2C13—C2—C1110.43 (16)C14—C13—H13A108.9C13—C2—C3111.48 (18)C14—C13—H13A108.9C13—C2—H2108.1C14—C13—H13B108.9C13—C2—H2108.1C14—C13—H13B108.9	C4—C9	1.386 (3)	C15—H15A	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C5	1.395 (3)	C15—H15B	0.9900
C5—H5 0.9500 C16—H16B 0.9900 C6—C7 1.375 (4)C17—H17A 0.9800 C6—H6 0.9500 C17—H17B 0.9800 C7—C8 1.384 (4)C17—H17C 0.9800 C7—H7 0.9500 C18—C20 1.470 (3)C8—C9 1.392 (3)C18—C19 1.484 (3)C8—H8 0.9500 C18—H18 1.0000 C9—H9 0.9500 C11—C12—C1 111.99 (18)C16—C1—C12 110.45 (19)C11—C12—H12A 109.2 C12—C1—C2 110.22 (18)C11—C12—H12A 109.2 C12—C1—C2 111.52 (17)C1—C12—H12A 109.2 C12—C1—C18 108.26 (17)C11—C12—H12B 109.2 C12—C1—C18 108.61 (18) $H12A$ —C12—H12B 109.2 C13—C2—C1 110.43 (16)C14—C13—C2 113.48 (19)C13—C2—C3 111.48 (18)C14—C13—H13A 108.9 C13—C2—H2 108.1 C14—C13—H13B 108.9	C5—C6	1.386 (3)	C16—H16A	0.9900
C6—C7 $1.375 (4)$ C17—H17A 0.9800 C6—H6 0.9500 C17—H17B 0.9800 C7—C8 $1.384 (4)$ C17—H17C 0.9800 C7—H7 0.9500 C18—C20 $1.470 (3)$ C8—C9 $1.392 (3)$ C18—C19 $1.484 (3)$ C8—H8 0.9500 C18—H18 1.0000 C9—H9 0.9500 C11—C12—C1 $111.99 (18)$ C16—C1—C12 $110.45 (19)$ C11—C12—H12A 109.2 C12—C1—C2 $110.22 (18)$ C11—C12—H12A 109.2 C12—C1—C2 $111.52 (17)$ C1—C12—H12B 109.2 C12—C1—C18 $108.26 (17)$ C11—C12—H12B 109.2 C13—C2—C1 $110.43 (16)$ C14—C13—C2 $113.48 (19)$ C13—C2—C3 $111.48 (18)$ C14—C13—H13A 108.9 C13—C2—H2 108.1 C14—C13—H13B 108.9	С5—Н5	0.9500	C16—H16B	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C7	1.375 (4)	С17—Н17А	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—Н6	0.9500	C17—H17B	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—С8	1.384 (4)	C17—H17C	0.9800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—Н7	0.9500	C18—C20	1.470 (3)
C8—H8 0.9500 C18—H18 1.0000 C9—H9 0.9500 C11—C12—C1 111.99 (18) C16—C1—C12 110.45 (19) C11—C12—H12A 109.2 C12—C1—C2 110.22 (18) C11—C12—H12A 109.2 C16—C1—C2 111.52 (17) C1—C12—H12A 109.2 C16—C1—C18 108.26 (17) C11—C12—H12B 109.2 C12—C1—C18 107.66 (17) C1—C12—H12B 109.2 C2—C1—C18 108.61 (18) H12A—C12—H12B 109.2 C13—C2—C1 110.43 (16) C14—C13—C2 113.48 (19) C13—C2—C3 111.48 (18) C14—C13—H13A 108.9 C13—C2—H2 108.1 C14—C13—H13B 108.9	C8—C9	1.392 (3)	C18—C19	1.484 (3)
C9—H9 0.9500 C16—C1—C12 110.45 (19) C11—C12—C1 111.99 (18) C16—C1—C2 110.22 (18) C11—C12—H12A 109.2 C12—C1—C2 111.52 (17) C1—C12—H12A 109.2 C16—C1—C18 108.26 (17) C11—C12—H12B 109.2 C12—C1—C18 107.66 (17) C1—C12—H12B 109.2 C2—C1—C18 108.61 (18) H12A—C12—H12B 107.9 C13—C2—C1 110.43 (16) C14—C13—C2 113.48 (19) C13—C2—C3 111.48 (18) C14—C13—H13A 108.9 C13—C2—H2 108.1 C14—C13—H13B 108.9	C8—H8	0.9500	C18—H18	1.0000
C16—C1—C12 110.45 (19) C11—C12—C1 111.99 (18) C16—C1—C2 110.22 (18) C11—C12—H12A 109.2 C12—C1—C2 111.52 (17) C1—C12—H12A 109.2 C16—C1—C18 108.26 (17) C11—C12—H12B 109.2 C12—C1—C18 107.66 (17) C1—C12—H12B 109.2 C2—C1—C18 108.61 (18) H12A—C12—H12B 107.9 C13—C2—C1 110.43 (16) C14—C13—C2 113.48 (19) C13—C2—C3 111.48 (18) C14—C13—H13A 108.9 C13—C2—H2 108.1 C14—C13—H13B 108.9	С9—Н9	0.9500		
C16—C1—C2 110.22 (18) C11—C12—H12A 109.2 C12—C1—C2 111.52 (17) C1—C12—H12A 109.2 C16—C1—C18 108.26 (17) C11—C12—H12B 109.2 C12—C1—C18 107.66 (17) C1—C12—H12B 109.2 C2—C1—C18 107.66 (17) C1—C12—H12B 109.2 C13—C2—C1 110.43 (16) C14—C13—C2 113.48 (19) C13—C2—C3 111.48 (18) C14—C13—H13A 108.9 C1—C2—C3 110.66 (18) C2—C13—H13A 108.9 C13—C2—H2 108.1 C14—C13—H13B 108.9	C16—C1—C12	110.45 (19)	C11—C12—C1	111.99 (18)
C12C1C2 111.52 (17) C1C12H12A 109.2 C16C1C18 108.26 (17) C11C12H12B 109.2 C12C1C18 107.66 (17) C1C12H12B 109.2 C2C1C18 108.61 (18) H12AC12H12B 107.9 C13C2C1 110.43 (16) C14C13C2 113.48 (19) C13C2C3 111.48 (18) C14C13H13A 108.9 C1C2C3 110.66 (18) C2C13H13A 108.9 C13C2H2 108.1 C14C13H13B 108.9	C16—C1—C2	110.22 (18)	C11—C12—H12A	109.2
C16—C1—C18 108.26 (17) C11—C12—H12B 109.2 C12—C1—C18 107.66 (17) C1—C12—H12B 109.2 C2—C1—C18 108.61 (18) H12A—C12—H12B 107.9 C13—C2—C1 110.43 (16) C14—C13—C2 113.48 (19) C13—C2—C3 111.48 (18) C14—C13—H13A 108.9 C1—C2—C3 110.66 (18) C2—C13—H13A 108.9 C13—C2—H2 108.1 C14—C13—H13B 108.9	C12—C1—C2	111.52 (17)	C1—C12—H12A	109.2
C12—C1—C18 107.66 (17) C1—C12—H12B 109.2 C2—C1—C18 108.61 (18) H12A—C12—H12B 107.9 C13—C2—C1 110.43 (16) C14—C13—C2 113.48 (19) C13—C2—C3 111.48 (18) C14—C13—H13A 108.9 C1—C2—C3 110.66 (18) C2—C13—H13A 108.9 C13—C2—H2 108.1 C14—C13—H13B 108.9	C16—C1—C18	108.26 (17)	C11—C12—H12B	109.2
C2—C1—C18 108.61 (18) H12A—C12—H12B 107.9 C13—C2—C1 110.43 (16) C14—C13—C2 113.48 (19) C13—C2—C3 111.48 (18) C14—C13—H13A 108.9 C1—C2—C3 110.66 (18) C2—C13—H13A 108.9 C13—C2—H2 108.1 C14—C13—H13B 108.9	C12—C1—C18	107.66 (17)	C1—C12—H12B	109.2
C13-C2-C1 110.43 (16) C14-C13-C2 113.48 (19) C13-C2-C3 111.48 (18) C14-C13-H13A 108.9 C1-C2-C3 110.66 (18) C2-C13-H13A 108.9 C13-C2-H2 108.1 C14-C13-H13B 108.9	C2-C1-C18	108.61 (18)	H12A—C12—H12B	107.9
C13—C2—C3 111.48 (18) C14—C13—H13A 108.9 C1—C2—C3 110.66 (18) C2—C13—H13A 108.9 C13—C2—H2 108.1 C14—C13—H13B 108.9 C1 C2 H2 108.1 C14—C13—H13B 108.9	C13—C2—C1	110.43 (16)	C14—C13—C2	113.48 (19)
C1—C2—C3 110.66 (18) C2—C13—H13A 108.9 C13—C2—H2 108.1 C14—C13—H13B 108.9 C1 C2 H2 108.1 C2	C13—C2—C3	111.48 (18)	C14—C13—H13A	108.9
C13-C2-H2 108.1 C14-C13-H13B 108.9	C1—C2—C3	110.66 (18)	C2—C13—H13A	108.9
C1 C2 H2 1001 C2 C12 H12D 1000	C13—C2—H2	108.1	C14—C13—H13B	108.9
UIU2	C1—C2—H2	108.1	C2—C13—H13B	108.9
C3—C2—H2 108.1 H13A—C13—H13B 107.7	С3—С2—Н2	108.1	H13A—C13—H13B	107.7
C4—C3—C10 112.40 (17) C17—C14—C13 111.5 (2)	C4—C3—C10	112.40 (17)	C17—C14—C13	111.5 (2)
C4—C3—C2 112.31 (18) C17—C14—C15 110.78 (19)	C4—C3—C2	112.31 (18)	C17—C14—C15	110.78 (19)
C10-C3-C2 110.42 (18) C13-C14-C15 111.13 (19)	C10—C3—C2	110.42 (18)	C13—C14—C15	111.13 (19)
C4—C3—H3 107.1 C17—C14—H14 107.8	С4—С3—Н3	107.1	C17—C14—H14	107.8
С10—С3—Н3 107.1 С13—С14—Н14 107.8	С10—С3—Н3	107.1	C13—C14—H14	107.8
C2—C3—H3 107.1 C15—C14—H14 107.8	С2—С3—Н3	107.1	C15—C14—H14	107.8
C9—C4—C5 118.1 (2) C14—C15—C16 111.88 (18)	C9—C4—C5	118.1 (2)	C14—C15—C16	111.88 (18)
C9—C4—C3 122.2 (2) C14—C15—H15A 109.2	C9—C4—C3	122.2 (2)	C14—C15—H15A	109.2
C5-C4-C3 119.7 (2) C16-C15-H15A 109.2	C5—C4—C3	119.7 (2)	C16—C15—H15A	109.2
C6—C5—C4 120.8 (2) C14—C15—H15B 109.2	86 85 84	120 8 (2)	C14_C15_H15B	109.2

supplementary materials

С6—С5—Н5	119.6	C16—C15—H15B	109.2
С4—С5—Н5	119.6	H15A—C15—H15B	107.9
C7—C6—C5	120.5 (2)	C15—C16—C1	113.49 (18)
С7—С6—Н6	119.7	C15—C16—H16A	108.9
С5—С6—Н6	119.7	C1—C16—H16A	108.9
C6—C7—C8	119.4 (2)	C15—C16—H16B	108.9
С6—С7—Н7	120.3	C1-C16-H16B	108.9
С8—С7—Н7	120.3	H16A—C16—H16B	107.7
С7—С8—С9	120.1 (3)	C14—C17—H17A	109.5
С7—С8—Н8	119.9	С14—С17—Н17В	109.5
С9—С8—Н8	119.9	H17A—C17—H17B	109.5
C4—C9—C8	120.9 (2)	С14—С17—Н17С	109.5
С4—С9—Н9	119.5	H17A—C17—H17C	109.5
С8—С9—Н9	119.5	H17B—C17—H17C	109.5
C11—C10—C3	110.17 (18)	C20-C18-C19	107.53 (19)
C11—C10—H10A	109.6	C20-C18-C1	113.71 (18)
С3—С10—Н10А	109.6	C19—C18—C1	112.4 (2)
C11-C10-H10B	109.6	C20-C18-H18	107.7
C3—C10—H10B	109.6	C19—C18—H18	107.7
H10A—C10—H10B	108.1	C1—C18—H18	107.7
O1—C11—C10	123.4 (2)	N1-C19-C18	177.1 (3)
O1—C11—C12	122.2 (2)	N2-C20-C18	178.7 (2)
C10-C11-C12	114.3 (2)		
C16—C1—C2—C13	54.0 (2)	C3-C10-C11-O1	120.9 (2)
C12—C1—C2—C13	177.03 (19)	C3—C10—C11—C12	-56.3 (3)
C18-C1-C2-C13	-64.5 (2)	O1-C11-C12-C1	-124.1 (2)
C16—C1—C2—C3	-69.9 (2)	C10-C11-C12-C1	53.1 (3)
C12—C1—C2—C3	53.1 (2)	C16-C1-C12-C11	72.3 (2)
C18—C1—C2—C3	171.61 (17)	C2-C1-C12-C11	-50.7 (3)
C13—C2—C3—C4	53.7 (2)	C18—C1—C12—C11	-169.7 (2)
C1—C2—C3—C4	177.04 (18)	C1—C2—C13—C14	-55.3 (2)
C13—C2—C3—C10	-179.95 (19)	C3—C2—C13—C14	68.2 (2)
C1—C2—C3—C10	-56.6 (2)	C2-C13-C14-C17	178.06 (19)
C10—C3—C4—C9	-60.6 (3)	C2-C13-C14-C15	53.9 (2)
C2—C3—C4—C9	64.7 (3)	C17—C14—C15—C16	-176.4 (2)
C10—C3—C4—C5	120.9 (2)	C13-C14-C15-C16	-51.9 (3)
C2—C3—C4—C5	-113.8 (2)	C14—C15—C16—C1	53.7 (3)
C9—C4—C5—C6	-0.5 (3)	C12—C1—C16—C15	-178.17 (18)
C3—C4—C5—C6	178.1 (2)	C2-C1-C16-C15	-54.5 (2)
C4—C5—C6—C7	-0.7 (4)	C18—C1—C16—C15	64.2 (2)
C5—C6—C7—C8	1.5 (4)	C16—C1—C18—C20	171.35 (19)
C6—C7—C8—C9	-1.2 (4)	C12—C1—C18—C20	51.9 (2)
C5—C4—C9—C8	0.8 (3)	C2—C1—C18—C20	-69.0 (2)
C3—C4—C9—C8	-177.8 (2)	C16—C1—C18—C19	48.9 (2)
C7—C8—C9—C4	0.1 (4)	C12—C1—C18—C19	-70.5 (2)
C4—C3—C10—C11	-176.4 (2)	C2—C1—C18—C19	168.59 (18)
C2—C3—C10—C11	57.3 (3)		

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C9—H9…O1 ⁱ	0.95	2.54	3.451 (3)	162
C12—H12A····O1 ⁱⁱ	0.99	2.35	3.159 (2)	138
C18—H18····N1 ⁱⁱⁱ	1.00	2.36	3.306 (3)	157
Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1$, <i>y</i> -1/2, - <i>z</i> ; (iii) - <i>x</i> +1, <i>y</i> -1/2	<i>, −z</i> +1.		

